# KEITHLEY 

Models 7711/7712
Single-Pole, Dual $1 \times 4$ RF Multiplexer Modules User's Guide

PA-818 Rev. A / 2-02

## WARRANTY

Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of 1 year from date of shipment.

Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries, diskettes, and documentation.

During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.

To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio. You will be given prompt assistance and return instructions. Send the product, transportation prepaid, to the indicated service facility. Repairs will be made and the product returned, transportation prepaid. Repaired or replaced products are warranted for the balance of the original warranty period, or at least 90 days.

## LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley's express written consent, or misuse of any product or part. This warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow instructions.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES.

NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF ITS INSTRUMENTS AND SOFTWARE EVEN IF KEITHLEY INSTRUMENTS, INC., HAS BEEN ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

## KEITHLEY

| Keithley Instruments, Inc. | 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 1-888-KEITHLEY (534-8453) • www.keithley.com |
| :---: | :---: |
| Sales Offices: BELGIUM: | Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw •02-363 $0040 \cdot$ Fax: 02/363 0064 |
| CHINA: | Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892 |
| FINLAND: | Tietäjäntie 2 •02130 Espoo • Phone: 09-54 $750810 \cdot$ Fax: 09-25 105100 |
| FRANCE: | 3, allée des Garays •91127 Palaiseau Cédex •01-64 $532020 \cdot$ Fax: 01-60 117726 |
| GERMANY: | Landsberger Strasse $65 \cdot 82110$ Germering •089/84 93 07-40 - Fax: 089/84 93 07-34 |
| GREAT BRITAIN: | Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB •0118929 7500 • Fax: 01189297519 |
| INDIA: | Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560 001 • 91-80-509-1320/21 - Fax: 91-80-509-1322 |
| ITALY: | Viale San Gimignano, 38 • 20146 Milano •02-48 $391601 \cdot$ Fax: 02-48 302274 |
| JAPAN: | New Pier Takeshiba North Tower 13F •11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 •81-3-5733-7555 • Fax: 81-3-5733-7556 |
| KOREA: |  |
| NETHERLANDS: | Postbus 559 - 4200 AN Gorinchem • 0183-635333 - Fax: 0183-630821 |
| SWEDEN: | c/o Regus Business Centre • Frosundaviks Allé 15, 4tr •169 70 Solna •08-509 04679 - Fax: 08-655 2610 |
| SWITZERLAND: | Kriesbachstrasse 4•8600 Dübendorf • 01-821 9444• Fax: 01-820 3081 |
| TAIWAN: | 1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031 |

## KEITHLEY Safety Precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous conditions may be present.
This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product. Refer to the manual for complete product specifications.
If the product is used in a manner not specified, the protection provided by the product may be impaired.
The types of product users are:
Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.
Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the instrument. They must be protected from electric shock and contact with hazardous live circuits.
Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line voltage or replacing consumable materials. Maintenance procedures are described in the manual. The procedures explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.
Service personnel are trained to work on live circuits, and perform safe installations and repairs of products. Only properly trained service personnel may perform installation and service procedures.
Keithley products are designed for use with electrical signals that are rated Installation Category I and Installation Category II, as described in the International Electrotechnical Commission (IEC) Standard IEC 60664. Most measurement, control, and data I/O signals are Installation Category I and must not be directly connected to mains voltage or to voltage sources with high transient over-voltages. Installation Category II connections require protection for high transient over-voltages often associated with local AC mains connections. Assume all measurement, control, and data I/O connections are for connection to Category I sources unless otherwise marked or described in the Manual.
Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If the circuit is capable of operating at or above 1000 volts, no conductive part of the circuit may be exposed.
Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance limited sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective devices to limit fault current and voltage to the card.
Before operating an instrument, make sure the line cord is connected to a properly grounded power receptacle. Inspect the connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.
When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input power disconnect device must be provided, in close proximity to the equipment and within easy reach of the operator.
For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the voltage being measured.
The instrument and accessories must be used in accordance with its specifications and operating instructions or the safety of the equipment may be impaired.
Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating information, and as shown on the instrument or test fixture panels, or switching card.
When fuses are used in a product, replace with same type and rating for continued protection against fire hazard.
Chassis connections must only be used as shield connections for measuring circuits, NOT as safety earth ground connections.
If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use of a lid interlock.

If $\xlongequal{\frac{1}{\leftrightarrows}}$ or $\pi_{7}$ is present, connect it to safety earth ground using the wire recommended in the user documentation.

The $\angle$ symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.

The symbol on an instrument shows that it can source or measure 1000 volts or more, including the combined effect of normal and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.
The WARNING heading in a manual explains dangers that might result in personal injury or death. Always read the associated information very carefully before performing the indicated procedure.
The CAUTION heading in a manual explains hazards that could damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.
Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits, including the power transformer, test leads, and input jacks, must be purchased from Keithley Instruments. Standard fuses, with applicable national safety approvals, may be used if the rating and type are the same. Other components that are not safety related may be purchased from other suppliers as long as they are equivalent to the original component. (Note that selected parts should be purchased only through Keithley Instruments to maintain accuracy and functionality of the product.) If you are unsure about the applicability of a replacement component, call a Keithley Instruments office for information.
To clean an instrument, use a damp cloth or mild, water based cleaner. Clean the exterior of the instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with no case or chassis (e.g., data acquisition board for installation into a computer) should never require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the factory for proper cleaning/servicing.

## Model 7711/7712

The information in this User's Guide is organized as follows:
Introduction on page 2

- Available accessories on page 2

Card configuration - schematic on page 3
Expansion on page 4

- Multiplexer examples on page 4
- $\mathbf{4 \times 4}$ Blocking matrix example on page 7
- $\mathbf{4} \times \mathbf{4}$ Non-blocking matrix example on page 7

Wiring procedure on page 10
Operation on page 10

- Channel assignments on page 11

Close/Open channels on page 11

- Multiple channel operation on page 11

S-parameters on page 12

- Unlocking calibration on page 12
- CALibration subsystem on page 12

SYSTem subsystem on page 14
Measurement considerations on page 15

- Termination of unused connectors on page 15
- Power handling on page 15
- Additional measurement uncertainty on page 15

Application example on page 17
Service on page 20

- Performance verification on page 20
- Replaceable parts on page 22

Specifications on page 27

## Introduction

If you have any questions after reviewing this information, please contact your local Keithley representative or call one of our Applications Engineers at 1-800-KEITHLEY (U.S. and Canada only).

The Model 7711/7712 is a single-pole dual $1 \times 4 \mathrm{RF}$ Multiplexer module ( 8 channels, no measurement capability). The $1 \times 4$ multiplex is a cascading tree design - one of the channels of each bank is always connected to a common out. The $1 \times 4$ multiplex is also referred to as a single-pole 4-throw (SP4T) switch. Refer to the simplified schematic in Figure 1 or the specifications. The multiplex switching can be used to connect one instrument to multiple devices $(1: N)$ or multiple instruments to a single device $(\mathrm{N}: 1)$. This card expands the Integra Series' general purpose AC switching capability by providing an RF switching capability above 1 MHz . Each card has the following features:

- 10 SMA connectors with $50 \Omega$ impedance
- Frequencies (refer to specifications)

Model 7711 - up to 2 GHz
Model 7712 - up to 3.5 GHz

- Two channels can be closed at one time-one channel to OUT A (channels 1-4) and one to OUT B (channels 5-8)
- Designed specifically for use with the Integra Series including Keithley's Models 2700 and 2750 Multimeter / Data Acquisition Systems
With this in mind, the capability of the Integra Series Model 2700 / 2750 is expanded for applications such as the following:
- General AC and digital signal routing to and from test equipment. This includes oscilloscopes, function generators, pulse generators, counter/timers, and signal analysis tools including network and jitter analyzers. Also, this includes diverse applications that require RF and digital routing plus DC measurements for research, development, burn-in and production testing, AC ripple and noise test for switching power supplies, and DC-DC converters.
- Research, development, and burn-in of temperature compensated oscillators.
- Research, development, and production test of communications or networking products including Ethernet, DSL, DS3, T1/E1, etc.


## Available accessories

## Model 7711 only

| $7711-S M A-B N C$ | Male SMA to Female BNC, five $0.15 \mathrm{~m}(0.5 \mathrm{ft})$ cables <br> (Insertion loss $<1 \mathrm{~dB} @ 1 \mathrm{GHz}, \mathrm{VSWR}<1.5 @ 1 \mathrm{GHz})$ |
| :--- | :--- |
| $7051-2$ | BNC cable, male to male, $0.6 \mathrm{~m}(2 \mathrm{ft})$. |
| $7051-5$ | BNC cable, male to male, $1.5 \mathrm{~m}(5 \mathrm{ft})$. |
| $7051-10$ | BNC cable, male to male, 3.0m (10ft.) |

## Model 7711/7712

7712-SMA-1 SMA cable, male to male, flexible, low loss, 1m (3.3ft)
(Insertion loss < 0.65dB @ 2GHz, VSWR < 1.11 @2GHz)
7712-SMA-N Female SMA to Male N-Type Adapter
S46-SMA-1 SMA cable, male to male, 0.3 m (1ft)
S46-SMA-0.5 SMA cable, male to male, $0.15 \mathrm{~m}(0.5 \mathrm{ft})$

## Card configuration-schematic

Figure 1 shows a simplified schematic diagram of the Model 7711/7712 module. As shown, the Model $7711 / 7712$ has channels that are grouped into dual $1 \times 4$ multiplexers. The multiplexer's design allows 1 channel of each set of 4 to be closed at a time ( 1 of 4 tree structure). Also, channels 1 and 5 are normally closed to OUT A and OUT B, respectively.

NOTE The Model 7711/7712 relays are set to close channels 1 and 5 a few seconds after either a power cycle or a $*$ RST command is issued (see Figure 1 for a schematic).

Figure 1
Simplified schematic for Model 7711/7712


NOTE To close channels 1 and 5 on a Model 7711/7712 in slot 1, send: :ROUT:MULT:CLOS (@101,105)

The channels are controlled over the bus or from the front panel. The grounds for these channels are nonisolated. Detailed connection information is contained later in this guide. By using the : ROUT : MULT : commands (refer to Section 2 of the Model 2700 User's Manual), they can be manually configured.

## Expansion

One Model 7711/7712 configuration is a dual ( 2 bank) $1 \times 4$ multiplexer. A single Model 7711/7712 module can also be configured as a $4 \times 4$ blocking matrix. The $7711 / 7712$ can be combined with additional modules to further expand its multiplexing and matrix switching capabilities (specifications may degrade when the Model $7711 / 7712$ is used in multiple module configurations). Refer to Table 1 for possible expansion information. Examples of multiplexer and blocking matrix expansion follow Table 1.

Table 1
Matrix and multiplex expansion

|  | Multiplexer |  |  |  | Blocking Matrix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of <br> $7711 / 7712$ Cards | $1 \times 4$ | $1 \times 8$ | $1 \times 12$ | $1 \times 16$ | $4 \times 4$ | $4 \times 8$ | $4 \times 12$ | $4 \times 16$ |
| 1 | X |  |  |  | X |  |  |  |
| 2 | X | X | X |  | X | X |  |  |
| 3 | X | X | X | X | X | X | X | X |

* Using four cards in a Model 2750, a $4 \times 4$ non-blocking matrix can be created (see the $4 \times 4$ nonblocking matrix example on page 9).

NOTE The commands in this section are formatted as follows: Command (@Model 2700/2750 Slot \#, Channel \#)

## Multiplexer examples

NOTE To minimize noise within the system, terminate unused channels with $50 \Omega$ loads. If $50 \Omega$ loads are not available, terminating unused connectors with a cable may also reduce noise within the system.

Figure 2 shows how to create a $1 \times 8$ SP8T MUX (single-pole eight-throw multiplex) using two Model 7711 cards. Channels 1 and 2 are connected to OUT A and OUT B of the second card in slot two. Terminate unused channels (in the example, channels 3 and 4 on the Model 7712 in slot one) with a $50 \Omega$ load.

Figure 3 shows how to create a $1 \times 12$ MUX using two Model 7711 cards.

NOTE Channels 3 and 4 (of 7711 in slot 1) may also be connected to other banks that will create a $1 \times 12$ multiplexer (or a $1 \times 16$ multiplexer). See Figure 4 for a $1 \times 12$ example. The following is a list of sample commands needed to operate the $1 \times 8$ multiplexer.

NOTE The command "ROUTe:MULTiple:CLOSe (@<channel list>)" closes one channel per bank (two banks per Model 7711/7712 module), and opens all other channels within the same bank.

Figure 2
1 x 8 MUX expansion


NOTE: The simplified schematic is shown in the power up state (Channels 1 and 5 are closed for cards in slots 1 and 2).

Grayed channels are not used in this $1 \times 8$ SP8T MUX.


Figure 3
$1 \times 12$ MUX expansion


## $4 \times 4$ Blocking matrix example

Figure 4 shows how to connect a single Model 7711 in a $4 \times 4$ blocking matrix. This configuration provides a convenient way to connect four DUTs to four different test instruments. In this configuration, one channel of bank 1 (channels $1-4$ ) may be routed to any channel of bank 2 (channels $5-6$ ). Use a short coaxial cable to connect OUT A to OUT B (S46-SMA-0.5). Table 2 contains example commands.

Figure 4
$4 \times 4$ blocking matrix expansion


NOTE: The simplified schematic is shown in the power up state (Channels 1 and 5 closed).

Table 2
$4 \times 4$ Blocking matrix commands

| Command | Signal path |
| :--- | :--- |
| ROUTe:MULTiple:CLOSe (@101,105) | Routes signal through channels 1 and 5 |
| ROUTe:MULTiple:CLOSe (@103,106) | Routes signal through channels 3 and 6 |

## $4 \times 4$ Non-blocking matrix example

Using a Model 2750 and four Model 7711/7712 cards, a $4 \times 4$ non-blocking matrix can be created. Figure 5 shows how to connect the 7711/7712 modules. This configuration provides a convenient way to simultaneously connect up to 4 DUTs to 4 different test instruments. Use a short coaxial cable to connect the OUTs of each module as shown. Table 3 contains a couple of sample commands to control the matrix.

To use Table 4, select the IN connection (IN 1 - IN 4), and then in the same square select the OUT connection (OUT1 - OUT 4). Send the ROUTe:MULTiple:CLOSe command with the channels in both "Ch" columns.

Table 3
$4 \times 4$ Sample non-blocking matrix commands

| Command | Signal path |
| :--- | :--- |
| ROUTe:MULTiple:CLOSe (@101,405) | Routes signal from IN1(OUT A of slot 1) through <br> OUT4 (OUT B of slot 4). |
| ROUTe:MULTiple:CLOSe (@101,405,108,302) | Routes signal from IN1 (OUT A of slot 1) through <br> OUT4 (OUT B of slot 4), and also from IN2 (OUT <br> B of slot 1) through OUT1 (OUT A of slot 4). |

Table 4
$4 \times 4$ Non-blocking matrix channels

| IN | Ch | Ch | OUT |
| :---: | :---: | :---: | :---: |
| IN 1 | 101 | 405 | OUT4 |
|  | 102 | 401 | OUT3 |
|  | 103 | 305 | OUT2 |
|  | 104 | 301 | OUT1 |


| IN | Ch | Ch | OUT |
| :---: | :---: | :---: | :---: |
| IN 3 | 201 | 407 | OUT4 |
|  | 202 | 403 | OUT3 |
|  | 203 | 307 | OUT2 |
|  | 204 | 303 | OUT1 |


| IN | Ch | Ch | OUT |
| :---: | :---: | :---: | :---: |
| IN 2 | 105 | 406 | OUT4 |
|  | 106 | 402 | OUT3 |
|  | 107 | 306 | OUT2 |
|  | 108 | 302 | OUT1 |


| IN | Ch | Ch | OUT |
| :---: | :---: | :---: | :---: |
| IN 4 | 205 | 408 | OUT4 |
|  | 206 | 404 | OUT3 |
|  | 207 | 308 | OUT2 |
|  | 208 | 304 | OUT1 |

Figure 5
$4 x 4$ Non-blocking matrix expansion


## Wiring procedure

## WARNING Do not exceed the maximum specifications for the Model 7711/7712 module. Refer to Appendix A for specifications.

The default closed channels are 1 and 5 - the lowest number in each bank. At power-up, the lowest numbered channel in each bank will always be closed. If using a saved setup that calls for another channel to be closed, the card will be switched to that channel but only after the firmware has finished "waking up." Therefore, the lowest channel will ALWAYS be closed for at least a brief time at power-up. The user needs to verify that nothing is connected to the lowest channel in each bank that could be damaged.

The connectors on the card are standard SMA type connectors. When making or breaking connections, use a torque wrench to produce mating torque of $0.9 \mathrm{~N} \cdot \mathrm{~m}$ ( $8 \mathrm{in} \bullet \mathrm{lbs}$ ).

NOTE Use a box-spanner torque wrench similar to Suhner Type 74 Z-1-0-21, Identification number 543130. This wrench is for SMA connectors with a $1.00 \mathrm{~N} \bullet \mathrm{~m}$ torque with 8.0 mm ( 0.315 in .) across the flats.

Figure 6
Model 7711/7712 channel connections


WARNING Do not touch live RF (radio frequency) conductors, even at low voltages! RF behaves differently than DC or low frequency AC. Low voltage RF can cause severe burns. RF signals spread out over body areas generating substantial currents at the points of contact with RF conductors.

Make all connections using correct wire size. If BNC connections are required, use the SMA to BNC adapter cables (see Available accessories on page 2).

## Specifications

Full Model 7711/7712 specifications are included at the end of this User Guide.

## Operation

NOTE The Model 7711/7712 modules cannot be included in scanlists.
Detailed information to close and open switching module channels is provided in Section 2 of both the Model 2700 and 2750 User's Manual. The following summarizes basic operation and provides operating information specific to the Model 7711/7712.

## Channel assignments

NOTE Measurement functions cannot be assigned to Model 7711/7712 modules. For example, if a Model 7711/7712 is installed in slot 1 and the SENSE:FUNC ‘VOLT:AC’, (@101) command is sent, a -221, "Settings Conflict" error would be reported.

The Model 2700 has two slots for switching modules, and the Model 2750 has five slots. To control the appropriate switching module, the slot number must be included with the switching module channel number when you specify a channel. The channel assignment is formatted as follows:

SCH where: S is the slot number CH is the channel number

Examples:
101 = Slot 1, Channel 1
$210=$ Slot 2, Channel 10
$506=$ Slot 5, Channel 6 (Model 2750)
NOTE For remote operation, the 3-digit channel assignment is included in the channel list parameter for the commands.

## Close/Open channels

## Multiple channel operation

WARNING $\quad \begin{aligned} & \text { Multiple channel operation should only be performed by experienced test engineers } \\ & \text { who recognize the dangers associated with multiple channel closures. }\end{aligned}$

For the Model 7711/7712, multiple channel operation provides control of one or two Model 7711/7712 modules in a Model 2700 (or up to 5 in a Model 2750). OUT A automatically switches as appropriate for channels $1-4$, and OUT B automatically switches as appropriate for channels $5-8$ for each module. When you close two channels in a single module (one for OUT A and one for OUT B), the appropriate channels will close channels outside of the banks (or on other modules) are not affected by channel closures.

The following paragraphs summarize multiple channel operation for the front panel and from the remote interface (bus).

## Front panel

- For the Models 2700 and 2750, the MULTI option of the CLOSE key can be used to close a channel.
- For the Models 2700 and 2750, the ALL option of the OPEN key closes channels 1 and 5 to OUT A and OUT B respectively.


## Remote interface

ROUT: MULT: CLOS <clist>- Closes specified channels (unlisted channels not affected unless in the same bank).

ROUT: MULT: CLOS? — Returns list of all closed channels.
ROUT:MULT: CLOS:STAT? <clist> — Query closed channels in list ( $1=$ closed).
ROUT: OPEN:ALL — Closes channels 1 and 5 to OUT A and OUT B respectively

The following command is not available:
ROUT:MULT: OPEN <clist> — Invalid command for the Model 7711/7712 module.
NOTE For example, if a Model 7711/7712 is installed in slot 1 and the ROUT:MULT:OPEN (@101) command is sent, a-221, "Settings
Conflict" error would be reported.

## S-parameters

S-parameters allow a text string of up to 238 ASCII characters to be stored on a module. This can be used for system calibration of cable and module losses. The calibration text string is stored on the module, independent of the Model 2700 or 2750 mainframe.

## Unlocking calibration

Use the following sequence of commands to unlock calibration (factory default code):

```
CAL:PROT:CODE "KIOO27x0"
CAL:PROT:CARD1:INIT
CAL:PROT:CARD1:SPAR "......"
CAL:PROT:CARD1:SAVE
where: x =0 for 2700
    x}=5\mathrm{ for 2750
```

NOTE Your mainframe calibration unlock code will remain the factory default code unless it is changed.

## CALibration subsystem

Commands to perform output operations are listed in Table 5. Details on these commands follow the table.

NOTE The following commands for the CALibration subsystem are specific to the Model 7711/7712 module. It is only available if a Model 7711/7712 is installed.

Table 5

## CALibration subsystem commands

| Command | Description | Default |
| :---: | :---: | :---: |
| 2700 Commands <br> CALibration <br> :PROTected <br> :CARD1 <br> :INITiate <br> :SPARameters <string> <br> :SPARameters? <br> :CARD2 <br> :SPARameters? | Path to CARD1 commands. <br> Initiate command-required before sending s-parameters. <br> Enter up to 238 characters for storage of S-parameter information about the card in slot 1 . <br> Query the ASCII information for CARD1. <br> Path to CARD2 commands. <br> Query the ASCII information for CARD2. | Empty |
| 2750 Commands (only) <br> CALibration <br> :CARD1 <br> :INITiate <br> :SPARameters <string> <br> :CARD <br> :SPARameters? <NRf> | Path to CARD commands. <br> Initiate command-required before sending s-parameters. <br> Enter up to 238 characters for storage of S-parameter information about the card in slot 1 . <br> Path to s-parameter queries. <br> Query the ASCII information for card in slot <NRf>. | Empty |

## :SPARameters <string>

If the card in this slot is not a valid RF card (Model 7711, etc.), then a -221 , "Settings Conflict" error is returned. Any valid ASCII information can be stored in the string space; it is not error checked in any way.

NOTE $\quad$ S-parameter data can only be written to a card in slot 1. The S-parameters are treated like card-cal constants, meaning that you must send a CAL:PROT:CARD1:INIT command before sending the SPARameters, and they are only saved on the card after a
CAL:PROT:CARD1:SAVE command. The $S$-parameter can be read from any slot.
:SPARameters? <NRf>
Query S-parameter
S-parameter data can only be written to a card in slot 1 . This is consistent with other Integra series type card calibrations that are allowed in slot 1 only. Also, the Model 2750 can be queried using CAL:PROT:CARD1:SPAR

NOTE Errors +518 and +519 are provided to flag corrupted S-parameter information or flag $S$ parameter information that was not properly initialized.

## SYSTem subsystem

Commands to perform system operations are listed in Table 5. Details on these commands follow the table.

NOTE The following commands for the Model 7711/7712 SYSTem subsystem are included here for reference.
Table 6
SYSTem subsystem commands

| Command | Description | Default |
| :---: | :---: | :---: |
| 2700 Commands :SYSTem <br> :CARD1 <br> :CARD2 <br> :SNUMber? <br> :SWRevision? <br> :VMAX? <br> :MUX? <br> :SNOpen? <br> :BANKs? | Path to queries for slot 1 card. <br> Path to queries for slot 2 card. <br> Request serial number of card in Slot $x$. <br> Request firmware revision of card in Slot $x$. <br> Query the highest allowed voltage on this card. <br> Return TRUE if this card support ANY mux channels. <br> Query whether the card is of the "single, no-open" type. <br> This query returns the number of banks on the card. If the card is not of the Single, No-Open type, then a -221 "Settings Conflict" error results with this query. |  |
| 2750 Commands (only) :CARD <br> :SNUMber? <NRf> <br> :SWRevision? <NRf> <br> :VMAX? <NRf> <br> :MUX? <NRf> <br> :SNOpen? < NRf> <br> :BANKs? <NRf> | Path to queries (slot is designated by $<\mathrm{NRf}>$ after query command). <br> Request serial number of card in Slot $x$. <br> Request firmware revision of card in Slot $x$. <br> Query the highest allowed voltage on this card. <br> Return TRUE if this card support ANY mux channels. <br> Query whether the card is of the "single, no-open" type. <br> This query returns the number of banks on the card. If the card is not of the Single, No-Open type, then a - 221 "Settings Conflict" error results with this query. |  |

## :CARD1

:CARD2

## Model 2700 commands

If no card is in slot 1, then all commands in Table 6 generate a - 241 "hardware missing" error. If the card does not support the feature or channels being queried, then 0 will be returned.

## :MUX?

Returns either a 1 or 0 . (For a Model $7711 / 7712$ card, a 0 is returned.)

## :SNOpen?

"single, no-open" type - The card is organized into banks of channels, and one channel must always be closed within that bank. The Model 7711 is representative of this class with two banks of 4 channels each. Returns either a 1 or 0 . (For a 7711/7712 card, a 1 is returned.)
:CARD

## Model 2750 commands only

If no card is in slot <NRf>, then all of these commands will generate a - 241 "hardware missing" error. If the card does not support the feature or channels being queried, then 0 will be returned.

Unlike the Model 2700, the Model 2750 SYST:CARD queries have the slot passed as a <NRf> following the query (rather than incorporated into the command name). For compatibility with existing Model 2700 software, the Model 2750 also accepts SYST:CARD1 or SYST:CARD2 (not recommended for queries when developing new software).

Example: To query the maximum voltage allowed on the card in slot 3 , send:
:SYST:CARD:VMAX? 3

## Measurement considerations

## Termination of unused connectors

To minimize noise within the system, terminate unused channels with $50 \Omega$ loads. If $50 \Omega$ loads are not available, terminating unused connectors with a cable may also reduce noise within the system.

## Power handling

The graph in Figure 7 shows the maximum amount of power per channel that can be routed using the Model 7711 or Model 7712 while maintaining proper digital multimeter accuracy. Power levels of up to 10 watts at frequencies $>200 \mathrm{MHz}$ can be used, but this may cause measurement errors. For example, routing 10 watts of power at 1 GHz may cause the Model 2700 to have an additional $6 \mu \mathrm{~V}$ offset uncertainty when measuring DC voltages. For the Model 2750, the precision low level circuitry may cause uncertainty of $30 \mu \mathrm{~V}$. Moving the Model 7711/7712 to a higher number slot will reduce this uncertainty.
Figure 7
Carry power (per channel) vs. frequency


## Additional measurement uncertainty

Table 7 lists additional uncertainty to the published specifications for the Model 7708. Other modules, such as the Model 7700 (which measures thermocouple temperature), are also affected by this heat but are still within published specification. The amount of uncertainty is dependent on:

- Model 7711/7712 slot location
- The amount of time the channel is programmed as an output
- Which other model 77XX module(s) are being used

The listed uncertainty in Table 7 is listed for channels 4 and 8 closed. The uncertainty is linear-for each channel programmed as input or off, there will be approximately 25 percent reduction in the listed on uncertainty. Table 8 lists the percentage of additional uncertainty for specific channel pairs closed.

Table 7
Additional uncertainty for Model 7711/7712

| Thermocouple | Range | 7708 |
| :---: | :---: | :---: |
| J | -200 to $0^{\circ} \mathrm{C}$ <br> 0 to $+768^{\circ} \mathrm{C}$ |  |
| K | -200 to $0^{\circ} \mathrm{C}$ <br> 0 to $+1372^{\circ} \mathrm{C}$ | 0.4 |
| N | -200 to $0^{\circ} \mathrm{C}$ <br> 0 to $+1300^{\circ} \mathrm{C}$ | 0.75 |
| T | -200 to $0^{\circ} \mathrm{C}$ <br> 0 to $+400^{\circ} \mathrm{C}$ | 0.15 |
| E | -200 to $0^{\circ} \mathrm{C}$ <br> 0 to $+1000^{\circ} \mathrm{C}$ | 0.15 |
| R | 0 to $+400^{\circ} \mathrm{C}$ <br> 0 to $+1768^{\circ} \mathrm{C}$ | 1.5 |
| S | 0 to $+400^{\circ} \mathrm{C}$ <br> 0 to $+1768^{\circ} \mathrm{C}$ | 1.5 |
| B | 350 to $1100^{\circ} \mathrm{C}$ <br> 0 to $+1820^{\circ} \mathrm{C}$ | 2.4 |

Notes:

1. The above listed uncertainties are guaranteed by design for thermocouple types J, K, N, T, E, R, S, B.
2. When the Model $7711 / 7712$ and Model 7708 are used together, the Model $7711 / 7712$ must be installed in the lowest numbered slot.
For example: Model 2700: 7711/7712 in slot 1, 7708 in slot 2
Model 2750: 7711/7112 in slot 2, 7708 in slot 3

Table 8
Percent of additional uncertainty

| Channels <br> closed | Percent of additional <br> uncertainty (from Table 7) |
| :---: | :---: |
| 4 and 8 | $100 \%$ |
| 2 and 8 | $75 \%$ |
| 3 and 8 | $75 \%$ |
| 4 and 6 | $75 \%$ |
| 4 and 7 | $75 \%$ |
| 1 and 8 | $50 \%$ |
| 2 and 6 | $50 \%$ |
| 2 and 7 | $50 \%$ |
| 3 and 6 | $50 \%$ |
| 3 and 7 | $50 \%$ |
| 4 and 5 | $50 \%$ |
| 1 and 6 | $25 \%$ |
| 1 and 7 | $25 \%$ |
| 2 and 5 | $25 \%$ |
| 2 and 6 | $25 \%$ |
| 1 and 5 | $0 \%$ |

## Application example

The following application example is for power supply testing. For basic overview and switching, refer to Figure 8. For the tests performed, refer to the provided code (Figure 9). Basic knowledge for Visual Basic functions, such as the $\operatorname{CStr}()$ function, as well as how forms work in Visual Basic, is required to fully understand the example.

Figure 8
Simplified connection schematic (one power supply shown)


## Figure 9

## Visual basic application example—power supply testing



```
Private Sub Configure_7700_DCV(Channel_Num As Integer, Power_Supply_DCV As Integer)
    Dim Channel_Str As String
    Channel_Str = ",(@" & CStr(Channel_Num) & ")"
    Call send(ADDRESS, "SENS:FUNC 'VOL\overline{T}:DC'" & Channel_Str, Status) Set channel to measure DCV.
    Call send(ADDRESS, "SENS:VOLT:DC:RANG 100" & Channēl_Str, Status) Set voltage range(Power Supply is at 5V).
    Call Configure_7700_Limits(Channel_Num, DCV_MAX, DCV_MIN)
End Sub
Private Sub Configure_7700_ACV(Channel_Num As Integer)
    Dim Channel_Str Ass String
    Channel_Str = ",(@" & CStr(Channel_Num) & ")" "
    Call send(ADDRESS, "SENS:FUNC 'VOLT:AC'" & Channel_Str, Status)
    Call Configure_7700_Limits(Channel_Num, ACV_MAX, ACV_MIN)
End Sub
Private Sub Configure_7700_CONT(Channel_Num As Integer)
    Dim Channel_Str As̄ String
    Channel_Str = ",(@" & CStr(Channel Num) & ")"
    Call señd(ADDRESS, "SENS:FUNC 'RES'" & Channel_Str, Status) Set channel to measure 2W ohms.
    Call send(ADDRESS, "SENS:RES:NPLC 0.1" & Channe\overline{l}}\mathrm{ Str, Status)
    Call Configure_7700_Limits(Channel_Num, CONT_MAX, CONT_MIN)
End Sub
Private Sub Configure_7700_TEMP(Channel_Num As Integer)
    Dim Channel_Str As Strīng
    Channel_Str = ",(@" & CStr(Channel Num) & ")"
    Call send(ADDRESS, "SENS:FUNC 'TEM\overline{P}'"& Channel_Str, Status) ' Set channel to TEMP measurement.
    Ca11 send(ADDRESS, "SENS:TEMP:TRAN TC" & Channel_Str, Status)
    Call send(ADDRESS, "SENS:TEMP:TC:RJUN:RSEL INT" & Chhannel_Str, Status)
        Select thermocouple measurement.
    Use internal reference junction.
    Call Configure_7700_Limits(Channel_Num, TEMP_MAX, TEMP_MIN)
End Sub
Private Sub Configure_7700_Channels()
    Dim POWER_SUPPLY_VOLTAGE As Integer
    For I = 0 TO NUMBER OF DUTS - 1
        Call Configure - 7700_DCV(1 + (I * NUMBER_OF_DUTS) + (SLOT_7700 * 100), POWER_SUPPLY_VOLTAGE)
        Call Configure-7700-ACV(2 + (I * NUMBER-OF-DUTS) + (SLOT 7700 * 100))
        Call Configure_7700_TTEMP(4 + (I * NUMBER_OF_DUTS) + (SLOT_7700 * 100))
    Next
    Call send(ADDRESS, "ROUT:CLOS:ACON ON", Status) ' Place instrument in auto-configure mode.
End Sub
    7705 Configurations
    Configure_Power Supplies(,)
        Uses the 7\overline{705 switch card to change the input voltage to the power supplies}
        They may run at either high line or low line. A load of 10% or 90% is also
        selected in this function.
        Assume the following for the 7705:
            1) Channels 1 to 4 connect each of the possible DUTS to HIGH LINE.
            2) Channels 11 to 14 connect each of the possible DUTS to LOW LINE.
            3) Channels 21 to 24 connect each of the possible DUTS to 10% load.
    ivate Sub Configure Power Supplies(Line As Integer, Load As Integer)
    Dim Min_Channel, Max_Chānnel As String
    ' Insert code here to turn off power supply outputs.
    Min_Channel = CStr ((SLOT 7705 * 100) + 1)
    Cal\overline{l send(ADDRESS, "ROUT:MULT:OPEN (@" & Min_Channel & ":" & Max_Channel & ")", Status) ' Open all 7705 channels.}
    Select Case (Line)
        Case HIGH_LINE
            Min_Channel = CStr((SLOT_7705 * 100) + 1)
            Max_Channel = CStr ((SLOT-7705 * 100) + NUMBER_OF_DUTS)
            Cal\overline{l}}\mathrm{ send(ADDRESS, "ROUT:MULT:CLOS (@" & Min_Channel & ":" & Max_Channel & ")", Status)
            Case LOW LINE
            Min_\overline{Channel = CStr ((SLOT_7705 * 100) + 1 + 10)}}\begin{array}{l}{\mathrm{ Max_Channel = CStr ((SLOT-7705 * 100) + NUMBER_OF_DUTS + 10)}}
            Cal\overline{l}}\mathrm{ send(ADDRESS, "ROUT`MULT:CLOS (@" & Min_Channel & ":" & Max_Channel & ")", Status)
    End Select
    Select Case (Load)
            Min_\overline{Channel = CStr ((SLOT_7705 * 100) + 1 + 20)}
            Max Channel = CStr ((SLLOT_7705 * % NOS (@ N & Min__Channel & ":" & Max_Channel & ")", Status)
            Case NINETY PERCENT LOAD
            Min_Chānnel = \overline{CStr}((SLOT 7705 * 100) + 1 + 30)
            CalI send(ADDRESS, "ROUT:MULT:CLOS (@" & Min Channel & ":" & Max Channel & ")", Status)
    End Select
    ' Insert code here to configure and/ or turn on power supply outputs.
End Sub
Measurement Functions
T-------------------
Closes the appropriate channels and takes a measurement using READ? command.
Private Sub Take Measurements()
    Dim I, J As Integer
    Dim Channel_Num As Integer
    Dim Channel_Str As String
```

```
    Dim Reading As String
    For I = 1 TO NUMBER OF DUTS , Loop to take measurements for all DUTs.
```



```
    Channel_Str = "(@" & CStr(Channel Num) & ")" 
    For J = 1 TO NUMBER OF FUNCTIONS 
        Channel_Str = "(@" & CStr(Channel_Num) & ")" 
        Call send(ADDRESS, "READ?", Status)
        Call enter(Reading, MAXLEN, LENGTH, ADDRESS, Status) Take measurement
        Readings(Reading_Counter) = Reading ' Store reading.
    Next Reading_Counter = Reading_Counter + 1
    Next
    ' Insert code here to take oscilloscope measurements.
    Next
End Sub
'' --------------
''' Main Function
Private Sub Start_Click()
    Reading_Counter = 0 ' ' Reset index counter
    Call seEtimeout(ENTER_TIMEOUT) , Reset index counter. Set timeout valuefor enter function.
    Call initialize(21, 0) ' Initialize GPIB.
    Call send(ADDRESS, "*RST", Status)
    Call send(ADDRESS, "INORM:ELEM OFFAD'UNIT" Status)
    Call Configure_7700_Channels ' Setup measurement channels on 7700.
    Call Configure_Power_Supplies(HIGH_LINE, TEN_PERCENT_LOAD) ' DUT input voltage is high line and 10% load
    Call Configure_Power_Supplies(HIGH_LINE, NINETY_PERCENT_LOAD) Measurements ' DUT input voltage is high line and 90% load.
    Call Take Measurements Conplies(HIGH_LINE, NINETY_PERCENT_LOAD) ' DUT input voltage is high line and 90% load.
    Call Configure_Power_Supplies(LOW_LINE, TEN_PERCENT_LOAD) ' DUT input voltage is low line and 10% load.
    Call Take_Measūrements Call Configure_Power_Supplies(LOW_LINE, NINETY_PERCENT_LOAD) , DUT input voltage is low line and 90% load.
End Sub
```

WARNING All service information is intended only for qualified service personnel. Do not attempt to service the Model 7711/7712 unless you are qualified to do so.

## Performance verification

The following tests are used to verify the RF characteristics of the Model 7711/7712 card. S-parameters are obtained by measuring VSWR and insertion loss among the common output and channel. The following equipment is recommended for the tests in this section:

1. Agilent HP 8753ES Network Analyzer ( 6 GHz ) with options 6 and 10.
2. $50 \Omega 3.5 \mathrm{MM}$ test port cables ( 1 m cables).
3. Agilent HP 85033D, 3.5mm Calibration Kit.
4. Phase matched 3.5 mm female-female thru-adapter.

## Instrument setup

1. Turn on the network analyzer and the mainframe with the Model 7711/7712 installed. Allow the analyzer to warm-up for at least 1 hour.
2. Calibrate the network analyzer from 100 MHz to 3.5 GHz using the appropriate calibration kit. The calibration routine should include a load, short, open, and pass-through procedure. Use SMA style connectors in the calibration process.

## VSWR

1. Connect cables as shown in Figure 10.
2. Close channel 1.
3. Select S11 or S22 measurement on the analyzer.
4. Display VSWR graph on network analyzer.
5. Verify specifications.

For the Model 7711 , verify at $100 \mathrm{MHz}, 500 \mathrm{MHz}, 1 \mathrm{GHz}, 1.5 \mathrm{GHz}$, and 2 GHz .
For the Model 7712 , verify at $500 \mathrm{MHz}, 1 \mathrm{GHz}, 2.5 \mathrm{GHz}$, and 3.5 GHz .
Refer to the VSWR section of the Model 7711 or 7712 specification values at the end of this User's Guide for acceptable limits.
6. Repeat procedure for remaining channels. Change the network analyzer connection from OUT A to OUT B when verifying channels 5-8.

Figure 10
VSWR and insertion loss verification
Network analyzer


Model 7711/7712


## Insertion loss

1. Connect cables as shown in Figure 10.
2. Close channel 1.
3. Select S12 or S21 measurement on the analyzer.
4. Display Log Magnitude plot on the network analyzer.
5. Verify specifications.

For the Model 7711 , verify at $100 \mathrm{MHz}, 500 \mathrm{MHz}, 1 \mathrm{GHz}, 1.5 \mathrm{GHz}$, and 2 GHz .
For the Model 7712 , verify at $500 \mathrm{MHz}, 1 \mathrm{GHz}, 2.5 \mathrm{GHz}$, and 3.5 GHz .
Refer to the Insertion Loss section of the Model 7711 or 7712 specifications values for acceptable limits.
6. Repeat procedure for remaining channels. Change the network analyzer connection to Port 2 to OUT B when verifying channels 5-8.

## Cross-talk

1. Connect cables as shown in Figure 11 (Channel 1 to port 1 and channel 2 to port $2,50 \Omega$ load on OUT A).
2. Close channel 1 (all other channels will open).
3. Display Log Magnitude plot on the network analyzer.
4. Select S12 measurement.
5. Verify specifications.

For the Model 7711 , verify at $100 \mathrm{MHz}, 500 \mathrm{MHz}, 1 \mathrm{GHz}, 1.5 \mathrm{GHz}$, and 2 GHz .
For the Model 7712 , verify at $500 \mathrm{MHz}, 1 \mathrm{GHz}, 2.5 \mathrm{GHz}$, and 3.5 GHz .
Refer to the Ch-Ch cross-talk section of the Model 7711 or 7712 specifications values for acceptable limits.
6. Repeat procedure for remaining channels in both banks. There are six possible combinations for each bank of 4 channels (combinations in bank 1: 1-2, 1-3, 1-4, 2-3, 3-4). When verifying cross-talk in the second bank, connect the $50 \Omega$ load on OUT B.

Figure 11
Cross-talk verification
Network analyzer


## Replaceable parts

This section contains replacement parts information and the component layout drawing for the Model 7711/ 7712.

## Parts list

Replaceable parts for the Model 7711/7712 are listed in Table 9.

## Ordering information

To place an order, or to obtain information concerning replacement parts, contact your Keithley representative or the factory (see back cover for addresses). When ordering parts, be sure to include the following information:

- Card model number (Model 7711/7712).
- Card serial number.
- Part description.
- Component designation (if applicable).
- Keithley part number.


## Factory service

If the instrument is to be returned to Keithley Instruments for repair, perform the following:

- Call the Repair Department at 1-888-KEITHLEY for a Return Material Authorization (RMA) number.
- Carefully pack the instrument in the original packing carton.
- Write ATTENTION REPAIR DEPARTMENT and the RMA number on the shipping label.


## Component layout

The component layout for the Model 7711 is provided in Figure 12. Figure 13 is the Model 7712 component layout.

Figure 12
Model 7711 component layout


Figure 13
Model 7712 component layout


Table 9
Model 7711/7712 parts list

| Circuit designation | Description | Keithley part no. |
| :---: | :---: | :---: |
| +5VD+5VR,GNDD C1,C3,C6,C19 C2,C4,C5,C18,C20-C24 C7-C17 CR1,CR2 J100 J1-J8,J10A,J10B* K1-K6: Model 7711 $\quad$ Model 7712) L1,L2 $\quad$ Q1-Q6 R1,R2,R11 R10 R12-R17 R3-R8 R9 U1,U2 U10 U3 U5 U7 U8 U9 | SURFACE MOUNT PCB TEST POINT CAP, 47P, 5\%, 100V, CERAMIC (0805) CAP, .1UF, 20\%, 50V CERAMIC(1206) CAP, 470U, 20\%, 25V, ALUM ELEC DIODE MBR5130LT3 CONN, RT ANGLE DUAL ROW RECEPT CONN, RT ANGLE JACK SMA 50 OHM HIGH FREQ RELAY <br> RF RELAY <br> FERRITE CHIP 600 OHM BLM32A07(1206) <br> TRANS, NPN SILICON <br> RES, $1 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805) <br> RES, $10 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805) <br> RES, $2.55 \mathrm{~K}, 1 \%, 1 \mathrm{~W}$ THICK FILM <br> RES, 43.2, 1\%, 100MW THICK FILM (0805) <br> RES, $357 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM(0805) <br> IC, QUAD 2 IN AND, 74HCT08(SOIC) <br> IC, 8 STAGE SHIFT/ <br> STORE,MC14094BD(SOIC) <br> IC, 2.5 V CASCADABLE SERIAL EEPROM <br> IC, +5V VOLTAGE REGULATOR, LM2940CT <br> IC, DARLINGTON ARRAY, ULN2003L (SOIC) <br> IC, RETRIG., MULTIVIB, 74HC123AM (SOIC) <br> IC, HEX SCHMITT INVERT TRIGGER | CS-1026 C-465-47P C-418-.1 C-622-470 RF-115 CS-1065-1 CS-1136 RL-238 RL-268 CH-62 TG-389 R-418-1K R-418-10K R-418-2.55K R-418-43.2 R-418-357K IC-837 IC-772 LSI-212 IC-576 IC-969 IC-788 IC-1397 |
| Hardware <br> Model 7711/7712 | MODIFIED TOP COVER <br> MODIFIED BOTTOM COVER <br> STANDOFF MALE-FEMALE <br> BAR CODE S/N LABEL <br> SERIAL NUMBER LABEL <br> 4-40 PEM NUT <br> MODIFIED TOP COVER <br> MODIFIED BOTTOM COVER <br> TOP CARD COVER <br> 4-40X3/16 PHIL. PAN HD SEMS <br> \#4-40 X 1/4 LG. PHIL.FLAT HD.SCREW \#4-40 X 1/4 LG. PHIL.FLAT HD.SCREW BOTTOM CARD COVER | V-7711-304A V-7711-303A ST-166-25 MC-612A MC-285 FA-131 $7711-304 \mathrm{~A}$ $7711-303 \mathrm{~A}$ $7703-302 \mathrm{C}$ $4-40 \mathrm{X} 3 / 16 \mathrm{PPHSEM}$ $4-40 \mathrm{X} 1 / 4 \mathrm{PFH}$ $4-40 \mathrm{X} 1 / 4 \mathrm{PFH}$ $7703-301 \mathrm{~B}$ |
| Model 7711 <br> Specific hardware | SCANNER BOARD ASSEMBLY CONNECTOR BRACKET | $\begin{aligned} & 7711-100 \mathrm{~B} \\ & 7711-301-1 \mathrm{~A} \end{aligned}$ |
| Model 7712 <br> Specific hardware | SCANNER BOARD ASSEMBLY CONNECTOR BRACKET | $\begin{aligned} & \hline 7712-100 \mathrm{~A} \\ & 7711-301-2 \mathrm{~A} \end{aligned}$ |

NOTE: Model 7711: J11-J16 are not populated. Model 7712: J20A, J20B, J22A, J22B, J24A, and J24B are not populated.

## 7711 50』2 $2 \mathbf{G H z}$ Multiplexer Specifications

## GENERAL

Relay Type: High Frequency Electromechanical
Contact Configuration: Dual 1x4 Multiplexer, single pole four throw, Channels 1 and 5 are normally closed.
Notes: One channel in each multiplex bank is always closed to the corresponding OUT connector.
Close Channel: ROUTe:CLOSe allows a single channel in a multiplex bank to be closed.
ROUTe:MULTiple:CLOSe allows two channels (One in each bank) to be closed at one time.
Open Channel: ROUTe:OPEN:ALL closes CH1 and CH5 to OUT A and OUT B respectively.
Actuation Time: $<10 \mathrm{mS}$
Firmware: Specified for Model 2700 rev. B04 and Model 2750 rev. A03 or higher.
Connector Type: Ten External Rear Panel SMA connectors.
Mating Torque: $0.9 \mathrm{~N} \bullet \mathrm{~m}$ ( $8 \mathrm{in}-\mathrm{lb}$ ).

## INPUTS (CHANNELS 1-8)

Maximum Signal Level: Any channel to any channel or chassis (1-8) 30 Vrms ( 42 V peak for AC waveforms) or $60 \mathrm{VDC}, 0.5 \mathrm{~A}$.
Maximum Power: 20W per module, 10W per channel.*
Safety: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I.
EMC: Conforms with European Union Directive 89/336/EEC; EN61326-1.

## Isolation:

Multiplexer to Multiplexer: $>1 \mathrm{G} \Omega$
Center to Shield: $>1 \mathrm{G} \Omega,<25 \mathrm{pF}$
Channel to Channel: $>100 \mathrm{M} \Omega$
Contact Life: $1 \times 10^{6}$ No Load, $1 \times 10^{5}$ Rated Load (resistive load)
Contact Potential: $<6 \mu \mathrm{~V}$
Contact Resistance: $<0.5 \Omega$ (Initial), $<1 \Omega$ (End Of Life)
Rise Time: $<300 \mathrm{ps}$ (Guaranteed by design)
Signal Delay: $<3 n s$

MODEL ACCESSORIES AVAILABLE

| 7711-SMA-BNC | Male SMA to Female BNC |
| :--- | :--- |
|  | Cables (Five, $0.15 \mathrm{~m}(0.5 \mathrm{ft})$ cables) |

7051-2 BNC cable, male to male, 0.6 m (2ft.)
7051-5 BNC cable, male to male, 1.5 m (5ft.)
7051-10 BNC cable, male to male, 3.0m (10ft.)
7712-SMA-1 SMA cable, male to male, 1.0 m (3.3 ft.)
7712-SMA-N Female SMA to Male N-Type Adapter
S46-SMA-1 SMA cable, male to male, 0.3 m ( 1 ft.$)$
S46-SMA-0.5 SMA cable, male to male, $0.15 \mathrm{~m}(0.5 \mathrm{ft}$ )

[^0]


## 7711 50 $\mathbf{2}$ 2GHz Multiplexer Specifications



| AC Performance: (Includes end of life) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| For $\mathrm{Z}_{\text {load }}=\mathrm{Z}_{\text {source }}=50 \Omega$ |  |  |  |  |  |
|  | $<100 \mathrm{MHz}$ | 500MHz | 1 GHz | 1.5 GHz | 2 GHz |
| $\begin{aligned} & \text { Insertion } \\ & \text { Loss } \\ & \text { MAX } \end{aligned}$ | 0.4 dB | 0.6 dB | 1.0 dB | 1.2 dB | 2.0 dB |
| $\begin{aligned} & \text { VSWR } \\ & \text { MAX } \end{aligned}$ | 1.1 | 1.2 | 1.2 | 1.3 | 1.7 |
| $\begin{aligned} & \text { Ch-Ch } \\ & \text { Cross-talk }{ }^{1} \\ & \text { MAX } \end{aligned}$ | -85dB | -65dB | -55dB | -45dB | -35dB |

## Environmental

Operating Environment: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Specified for $80 \%$ RH at $35^{\circ} \mathrm{C}$
Storage Environment: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Weight: $<0.50 \mathrm{Kg}(1.1 \mathrm{lb}$.)

## $771250 \Omega$ 3.5GHz Multiplexer

## GENERAL

Relay Type: High Frequency Electromechanical
Contact Configuration: Dual 1x4 Multiplexer, single pole four throw, Channels 1 and 5 are normally closed
Notes: One channel in each multiplex bank is always closed to the corresponding OUT connector.
Close Channel: ROUTe:CLOSe allows a single channel in a multiplex bank to be closed.
ROUTe:MULTiple:CLOSe allows two channels (One in each bank) to be closed at one time.
Open Channel: ROUTe:OPEN:ALL closes CH1 and CH5 to OUT A and OUT B respectively.
Actuation Time: $<10 \mathrm{mS}$
Firmware: Specified for Model 2700 rev. B04 and Model 2750 rev. A03 or higher.
Connector Type: Ten External Rear Panel SMA connectors
Mating Torque: $0.9 \mathrm{~N} \bullet \mathrm{~m}(8 \mathrm{in}-\mathrm{lb})$.

## INPUTS (CHANNELS 1-8)

Maximum Signal Level: Any channel to any channel or chassis (1-8) 30 Vrms ( 42 V peak for AC waveforms) or $42 \mathrm{VDC}, 0.5 \mathrm{~A}$.
Maximum Power: 20W per module. 10W per channel.*
Safety: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I.
EMC: Conforms with European Union Directive 89/336/EEC; EN61326-1.
Isolation:
Multiplexer to Multiplexer: $>1 \mathrm{G} \Omega$
Center to Shield: $>1 \mathrm{G} \Omega,<20 \mathrm{pF}$
Channel to Channel: $>100 \mathrm{M} \Omega$
Contact Life: $5 \times 10^{6}$ No Load, $1 \times 10^{5}$ Rated Load (Resistive load)
Contact Potential: $<12 \mu \mathrm{~V}$
Contact Resistance: $<0.5 \Omega$ (Initial), $<1 \Omega$ (End Of Life)
Rise Time: <200ps (Guaranteed by design)
Signal Delay: <1.5ns

MODEL ACCESSORIES AVAILABLE
7712-SMA-1 SMA cable, male to male, 1 m ( 3.3 ft )
7712-SMA-N Female SMA to Male N-Type Adapter
S46-SMA-1 SMA cable, male to male, 0.3 m (1ft)
S46-SMA-0.5 SMA cable, male to male, $0.15 \mathrm{~m}(0.5 \mathrm{ft}$.)

[^1]

AC Performance: (Includes end of life)
$\underline{\text { For } Z_{\text {load }}}=Z_{\text {source }}=50 \Omega$

|  | $<\mathbf{5 0 0 M} \mathbf{M H z}$ | $\mathbf{1 G H z}$ | $\mathbf{2 . 4 G H z}$ | $\mathbf{3 . 5 G H z}$ |
| :---: | :---: | :---: | :---: | :---: |
| Insertion Loss <br> MAX | 0.5 dB | 0.65 dB | 1.1 dB | 1.3 dB |
| VSWR <br> MAX | 1.15 | 1.2 | 1.45 | 1.45 |
| Ch-Ch <br> Crosstalk <br> MAX | -75 dB | -70 dB | -50 dB | -45 dB |

${ }^{1}$ Specification assumes $50 \Omega$ termination.

## ENVIRONMENTAL

Operating Environment: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Specified for $80 \%$ RH at $35^{\circ} \mathrm{C}$
Storage Environment: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Weight: $<.50 \mathrm{Kg}(1.1 \mathrm{lb}$.

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies.

## KEITHLEY

Keithley Instruments, Inc.

| Sales Offices: BELGIUM: | Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw • 02-363 $0040 \cdot$ Fax: 02/363 0064 |
| :---: | :---: |
| CHINA: | Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892 |
| FINLAND: | Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 $750810 \cdot$ Fax: 09-25 105100 |
| FRANCE: | 3, allée des Garays •91127 Palaiseau Cédex • 01-64 $532020 \cdot$ Fax: 01-60 117726 |
| GERMANY: | Landsberger Strasse $65 \cdot 82110$ Germering • 089/84 93 07-40 - Fax: 089/84 93 07-34 |
| GREAT BRITAIN: | Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 01189297500 - Fax: 01189297519 |
| INDIA: | Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560001 • 91-80-509-1320/21 ${ }^{\text {- Fax: 91-80-509-1322 }}$ |
| ITALY: | Viale San Gimignano, 38 • 20146 Milano •02-48 391601 • Fax: 02-48 302274 |
| JAPAN: | New Pier Takeshiba North Tower 13F • 11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 • 81-3-5733-7555 • Fax: 81-3-5733-7556 |
| KOREA: | 2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-888 • 82-2-574-7778 • Fax: 82-2-574-7838 |
| NETHERLANDS: | Postbus 559 • 4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821 |
| SWEDEN: | c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 16970 Solna • 08-509 04679 • Fax: 08-655 2610 |
| SWITZERLAND: | Kriesbachstrasse 4•8600 Dübendorf • 01-821 $9444 \cdot$ Fax: 01-820 3081 |
| TAIWAN: | 1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031 |


[^0]:    * Refer to 7711/7712 User's Guide (PA-818) for measurement considerations.

[^1]:    * Refer to 7711/7712 User's Guide (PA-818) for measurement considerations.

